Fast Convolutional Method for Automatic Sleep Stage Classification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Sleep Stage Classification Using Frequency Analysis of Eeg Signals

An automated sleep stage classification system relying only on the frequency analysis of the EEG signal is developed and analyzed in this paper. The classification system consists of the feature extraction algorithm and a neural network classifier. We investigate two different feature extraction methods: a classical FFT frequency analysis and a novel LMS based feature extraction. The same two-l...

متن کامل

Automatic sleep stage classification using two-channel electro-oculography.

An automatic method for the classification of wakefulness and sleep stages SREM, S1, S2 and SWS was developed based on our two previous studies. The method is based on a two-channel electro-oculography (EOG) referenced to the left mastoid (M1). Synchronous electroencephalographic (EEG) activity in S2 and SWS was detected by calculating cross-correlation and peak-to-peak amplitude difference in ...

متن کامل

A two-step automatic sleep stage classification method with dubious range detection

BACKGROUND The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an AS...

متن کامل

Artifacts processing for sleep stage classification

When a patient falls asleep, he transits by different sleep stages, which characterize the quality of his night. To determine these sleep stages, the technicians visually analyzes the polysomnographic signals (PSG) witch have different aspects according to these stages. However, this task requires a lot of time. This is why one generally tries to class them automatically. Then, one is generally...

متن کامل

Automatic Sleep Stage Scoring with Single-Channel EEG Using Convolutional Neural Networks

We used convolutional neural networks (CNNs) for automatic sleep stage scoring based on single-channel electroencephalography (EEG) to learn task-specific filters for classification without using prior domain knowledge. We used an openly available dataset from 20 healthy young adults for evaluation and applied 20-fold crossvalidation. We used class-balanced random sampling within the stochastic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Healthcare Informatics Research

سال: 2018

ISSN: 2093-3681,2093-369X

DOI: 10.4258/hir.2018.24.3.170